ISSUE FOCUS 42 FEED & ADDITIVE MAGAZINE February 2024 a pivotal role in improving the hindgut fermentation of dietary fiber components, significantly unlocking energy reserves. During hindgut fermentation, production of short chain fatty acids such as butyric acid will also positively influence the growth of colonocytes. As there are many different ingredients used in piglet feed and they contain many types and concentrations of fiber, it is imperative that the right enzymes are matched to the ingredients. The recent development of near infrared reflectance spectroscopy to predict NSP composition and starch digestibility profiles (Nieto-Ortega et al., 2022) can assist in optimizing which exogenous enzymes to apply. In addition to the major nutrients of energy and amino acids, supporting resilience also relies on accurate mineral nutrition, including phosphorous. Reducing the negative effects of phytate on nutrient binding can increase mineral availability. Phytase has been shown to have additional effects on animal performance, over and above the phosphorus effect (Lu et al., 2019), at the post-absorptive level. A further effect of phytase supplementation is the release of myo-inositol (the core of phytic acid). A key function of myo-inositol is in stimulation of glucose uptake and glucose uptake has been proposed as a rate limiting step for muscle glycogen synthesis so provision of extra myo-inositol may enhance muscle growth (Lu et al., 2019). CONCLUSION In summary, supporting resilience through optimizing gastrointestinal functionality relies on addressing both the pre-and post-absorptive factors influencing nutrient absorption and utilization. Clearing bacterial cell debris in the gut and use of enzymes to increase digestibility of fiber, protein and starch are important tools in optimizing the pre-absorptive digestive processes. Effective incorporation into lean deposition of the energy from fibre and the minerals in the feed are central to the post-absorptive processes influencing pig performance potential. Supporting resilience in piglets is key to maximizing lifetime performance and profitability of the pig and supporting the pig in reaching its genetic potential. References 1. Brossard, L., van Milgen, J., Lannuzel, P.Y., Bertinotti, R. and Rivest, J., 2006, January. Analyse des relations entre croissance et ingestion à partir de
RkJQdWJsaXNoZXIy MTUxNjkxNQ==