ARTICLE 70 FEED & ADDITIVE MAGAZINE June 2022 palm kernel meal and distillery by-products contain fiber at concentrations sufficient to interfere with feed intake and to slough the mucosa of the intestinal tract. Thanks to NIR technology, these changes in dietary fiber profile can be quantified and mapped systematically to allow tactical enzyme selection. Importantly, high fiber by-products often contain appreciable phytate concentrations and this may be further considered in phytase dose optimization discussions. 3. Leveraging the microbiome. Use of mono-component carbohydrases and blends of complementary carbohydrases such as xylanases, glucanases, pectinases and amylase result in substantial increases in metabolizable, digestible and net energy density of feed ingredients and improve gut health via changes in fermentation profiles in the hind gut microbiota. These changes in the enteric microbiome are also cumulative and enable the host to build increasing tolerance to fiber ingestion. Importantly, to generate persistent beneficial effects, enzymes must be included from hatch to slaughter. Adding and removing enzymes in different dietary phases generates effects that are less predictable and more variable. Beyond energy, improvements in amino acid digestibility also occur when carbohydrases are utilised, and this can have further feed cost impact or generate reductions in FCR. 4. Low protein diets. Exogenous protease, supported by adjacent enzymes such as phytase and carbohydrase and strategic use of crystalline amino acids, allow animal performance to be sustained with radically reduced dietary crude protein concentrations. This has a substantial effect on diet cost and brings more latitude in formulation approaches e.g., reduced reliance on imported protein meals. Importantly, biochemical flow of protein and non-protein nitrogen to the environment is significantly reduced when dietary protein concentration is lowered e.g., for every 1% drop in dietary crude protein, ammonia nitrogen output is reduced by 10%. These changes not only influence feed cost but also improve animal health and welfare, litter quality, carcass quality and environmental sustainability. Upward ‘drift’ in FCR when radically low protein diets are fed may be mitigated via additional supply of digestible phosphate, combined with strategic use of carbohydrase and protease, to increase dietary protein retention and reduce endogenous amino acid loss. It is critical that an accurate amino acid matrix is applied as generic or ‘flat’ matrices for amino acids that do not consider the specific mode of action of the enzymes for different feed ingredients will result in unpredictable performance outcomes. 5. Precision nutrition. Finally, a dialogue with a local feed enzyme technical specialist is recommended because application of enzyme matrices, admixture selection and dosing should be done, whenever practical, with prior knowledge of the basal diet and live production targets. Tailored recommendations can be delivered that best suit the specific goals of the nutritionist, diet composition and desired formulation approaches. FEED COST SAVINGS When new feed enzyme products are introduced to the market, they typically carry a recommended nutrient release profile or ‘nutritional matrix’. These matrices are constructed during product development and are usually an aggregation of effects detected during multiple controlled experiments in university settings. However, in practice these matrices are only partially applied by commercial nutritionists and in some cases feed enzymes are used ‘on top’ of formulation where a small increase in feed cost is tolerated in return for a deferred im-
RkJQdWJsaXNoZXIy MTUxNjkxNQ==